表格型方法存储的状态数量有限,当面对围棋或机器人控制这类有数不清的状态的环境时,表格型方法在存储和查找效率上都受局限,DQN的提出解决了这一局限,使用神经网络来近似替代Q表格。
本质上DQN还是一个Q-learning算法,更新方式一致。为了更好的探索环境,同样的也采用epsilon-greedy方法训练。
(资料图)
在Q-learning的基础上,DQN提出了两个技巧使得Q网络的更新迭代更稳定。
经验回放(Experience Replay): 使用一个经验池存储多条经验s,a,r,s",再从中随机抽取一批数据送去训练。
固定目标(Fixed Q-Target): 复制一个和原来Q网络结构一样的Target-Q网络,用于计算Q目标值。
公众号算法美食屋后台回复关键词:torchkeras,获取本文notebook源码~
不了解强化学习的同学,推荐先阅读:Q-learning解决悬崖问题
一,准备环境gym是一个常用的强化学习测试环境,可以用make创建环境。
env具有reset,step,render几个方法。
倒立摆问题
环境设计如下:
倒立摆问题环境的状态是无限的,用一个4维的向量表示state.
4个维度分别代表如下含义
cart位置:-2.4 ~ 2.4cart速度:-inf ~ infpole角度:-0.5 ~ 0.5 (radian)pole角速度:-inf ~ inf智能体设计如下:
智能体的action有两种,可能的取值2种:
0,向左1,向右奖励设计如下:
每维持一个步骤,奖励+1,到达200个步骤,游戏结束。
所以最高得分为200分。
倒立摆问题希望训练一个智能体能够尽可能地维持倒立摆的平衡。
import gym import numpy as np import pandas as pd import timeimport matplotlibimport matplotlib.pyplot as pltfrom IPython import displayprint("gym.__version__=",gym.__version__)%matplotlib inline#可视化函数:def show_state(env, step, info=""): plt.figure(num=10086,dpi=100) plt.clf() plt.imshow(env.render()) plt.title("step: %d %s" % (step, info)) plt.axis("off") display.clear_output(wait=True) display.display(plt.gcf()) plt.close() env = gym.make("CartPole-v1",render_mode="rgb_array") # CartPole-v0: 预期最后一次评估总分 >180(最大值是200)env.reset()action_dim = env.action_space.n # CartPole-v0: 2obs_shape = env.observation_space.shape # CartPole-v0: (4,)gym.__version__= 0.26.2
env.reset()done = Falsestep = 0while not done: action = np.random.randint(0, 1) state,reward,done,truncated,info = env.step(action) step+=1 print(state,reward) time.sleep(1.0) #env.render() show_state(env,step=step) #print("step {}: action {}, state {}, reward {}, done {}, truncated {}, info {}".format(\ # step, action, state, reward, done, truncated,info)) display.clear_output(wait=True)可以看到,没有训练智能体之前,我们采取随机动作的话,只维持了10步,倒立摆就因为倾斜角度超出范围而导致游戏结束。?
二,定义AgentDQN的核心思想为使用一个神经网络来近似替代Q表格。
Model: 模型结构, 负责拟合函数 Q(s,a)。主要实现forward方法。
Agent:智能体,负责学习并和环境交互, 输入输出是numpy.array形式。有sample(单步采样), predict(单步预测), 有predict_batch(批量预测), compute_loss(计算损失), sync_target(参数同步)等方法。
import torch from torch import nnimport torch.nn.functional as Fimport copy class Model(nn.Module): def __init__(self, obs_dim, action_dim): # 3层全连接网络 super(Model, self).__init__() self.obs_dim = obs_dim self.action_dim = action_dim self.fc1 = nn.Linear(obs_dim,32) self.fc2 = nn.Linear(32,16) self.fc3 = nn.Linear(16,action_dim) def forward(self, obs): # 输入state,输出所有action对应的Q,[Q(s,a1), Q(s,a2), Q(s,a3)...] x = self.fc1(obs) x = torch.tanh(x) x = self.fc2(x) x = torch.tanh(x) Q = self.fc3(x) return Q model = Model(4,2)model_target = copy.deepcopy(model)model.eval()model.forward(torch.tensor([[0.2,0.1,0.2,0.0],[0.3,0.5,0.2,0.6]]))model_target.eval() model_target.forward(torch.tensor([[0.2,0.1,0.2,0.0],[0.3,0.5,0.2,0.6]]))
tensor([[-0.1148, 0.0068], [-0.1311, 0.0315]], grad_fn=)
import torch from torch import nn import copy class DQNAgent(nn.Module): def __init__(self, model, gamma=0.9, e_greed=0.1, e_greed_decrement=0.001 ): super().__init__() self.model = model self.target_model = copy.deepcopy(model) self.gamma = gamma # reward 的衰减因子,一般取 0.9 到 0.999 不等 self.e_greed = e_greed # 有一定概率随机选取动作,探索 self.e_greed_decrement = e_greed_decrement # 随着训练逐步收敛,探索的程度慢慢降低 self.global_step = 0 self.update_target_steps = 200 # 每隔200个training steps再把model的参数复制到target_model中 def forward(self,obs): return self.model(obs) @torch.no_grad() def predict_batch(self, obs): """ 使用self.model网络来获取 [Q(s,a1),Q(s,a2),...] """ self.model.eval() return self.forward(obs) #单步骤采样 def sample(self, obs): sample = np.random.rand() # 产生0~1之间的小数 if sample < self.e_greed: action = np.random.randint(self.model.action_dim) # 探索:每个动作都有概率被选择 else: action = self.predict(obs) # 选择最优动作 self.e_greed = max( 0.01, self.e_greed - self.e_greed_decrement) # 随着训练逐步收敛,探索的程度慢慢降低 return action #单步骤预测 def predict(self, obs): # 选择最优动作 obs = np.expand_dims(obs, axis=0) tensor = torch.tensor(obs,dtype=torch.float32).to(self.model.fc1.weight.device) pred_Q = self.predict_batch(tensor) action = torch.argmax(pred_Q,1,keepdim=True).cpu().numpy() action = np.squeeze(action) return action def sync_target(self): """ 把 self.model 的模型参数值同步到 self.target_model """ self.target_model.load_state_dict(self.model.state_dict()) def compute_loss(self, obs, action, reward, next_obs, done): # 每隔200个training steps同步一次model和target_model的参数 if self.global_step % self.update_target_steps == 0: self.sync_target() self.global_step += 1 # 从target_model中获取 max Q" 的值,用于计算target_Q self.target_model.eval() next_pred_value = self.target_model(next_obs) best_value = torch.max(next_pred_value, dim = 1,keepdim=True).values target = reward.reshape((-1,1)) + ( torch.tensor(1.0) - done.reshape(-1,1)) * self.gamma * best_value #print("best_value",best_value.shape) #print("target",target.shape) # 获取Q预测值 self.model.train() pred_value = self.model(obs) action_onehot = F.one_hot(action.reshape(-1), num_classes = self.model.action_dim).float() prediction = torch.sum(pred_value*action_onehot,dim= 1,keepdim=True) #print("pred_value",pred_value.shape) #print("action_onehot",action_onehot.shape) #print("prediction",prediction.shape) # 计算 Q(s,a) 与 target_Q的均方差,得到loss loss = F.smooth_l1_loss(target,prediction) return loss agent = DQNAgent(model,gamma=0.9,e_greed=0.1, e_greed_decrement=0.001)
agent.predict_batch(torch.tensor([[2.0,3.0,4.0,2.0],[1.0,2.0,3.0,4.0]]))
tensor([[-0.1596, -0.0481], [-0.0927, 0.0318]])
loss = agent.compute_loss(torch.tensor([[2.0,3.0,4.0,2.0],[1.0,2.0,3.0,4.0],[1.0,2.0,3.0,4.0]]), torch.tensor([[1],[0],[0]]), torch.tensor([[1.0],[1.0],[1.0]]), torch.tensor([[2.0,3.0,0.4,2.0],[1.0,2.0,3.0,4.0],[1.0,2.0,3.0,4.0]]), torch.tensor(0.9))print(loss)
tensor(0.5757, grad_fn=三,训练Agent)
import randomimport collectionsimport numpy as npLEARN_FREQ = 5 # 训练频率,不需要每一个step都learn,攒一些新增经验后再learn,提高效率MEMORY_SIZE = 2048 # replay memory的大小,越大越占用内存MEMORY_WARMUP_SIZE = 512 # replay_memory 里需要预存一些经验数据,再开启训练BATCH_SIZE = 128 # 每次给agent learn的数据数量,从replay memory随机里sample一批数据出来
#经验回放class ReplayMemory(object): def __init__(self, max_size): self.buffer = collections.deque(maxlen=max_size) # 增加一条经验到经验池中 def append(self, exp): self.buffer.append(exp) # 从经验池中选取N条经验出来 def sample(self, batch_size): mini_batch = random.sample(self.buffer, batch_size) obs_batch, action_batch, reward_batch, next_obs_batch, done_batch = [], [], [], [], [] for experience in mini_batch: s, a, r, s_p, done = experience obs_batch.append(s) action_batch.append(a) reward_batch.append(r) next_obs_batch.append(s_p) done_batch.append(done) return np.array(obs_batch).astype("float32"), \ np.array(action_batch).astype("int64"), np.array(reward_batch).astype("float32"),\ np.array(next_obs_batch).astype("float32"), np.array(done_batch).astype("float32") def __len__(self): return len(self.buffer) from torch.utils.data import IterableDataset,DataLoader class MyDataset(IterableDataset): def __init__(self,env,agent,rpm,stage="train",size=200): self.env = env self.agent = agent self.rpm = rpm if stage=="train" else None self.stage = stage self.size = size def __iter__(self): obs,info = self.env.reset() # 重置环境, 重新开一局(即开始新的一个episode) step = 0 batch_reward_true = [] #记录真实的reward while True: step += 1 action = self.agent.sample(obs) next_obs, reward, done, _, _ = self.env.step(action) # 与环境进行一个交互 batch_reward_true.append(reward) if self.stage=="train": self.rpm.append((obs, action, reward, next_obs, float(done))) if (len(rpm) >MEMORY_WARMUP_SIZE) and (step % LEARN_FREQ == 0): #yield batch_obs, batch_action, batch_reward, batch_next_obs,batch_done yield self.rpm.sample(BATCH_SIZE),sum(batch_reward_true) batch_reward_true.clear() else: obs_batch = np.array([obs]).astype("float32") action_batch = np.array([action]).astype("int64") reward_batch = np.array([reward]).astype("float32") next_obs_batch = np.array([next_obs]).astype("float32") done_batch = np.array([float(done)]).astype("float32") batch_data = obs_batch,action_batch,reward_batch,next_obs_batch,done_batch yield batch_data,sum(batch_reward_true) batch_reward_true.clear() if self.stage =="train": next_action = self.agent.sample(next_obs) # 训练阶段使用探索策略 else: next_action = self.agent.predict(next_obs) # 验证阶段使用模型预测结果 action = next_action obs = next_obs if done: if self.stage=="train" and len(self.rpm)#ReplayMemory预存数据while len(ds_train.rpm)1347167272511521
def collate_fn(batch): samples,rewards = [x[0] for x in batch],[x[-1] for x in batch] samples = [torch.from_numpy(np.concatenate([x[j] for x in samples])) for j in range(5)] rewards = torch.from_numpy(np.array([sum(rewards)]).astype("float32")) return samples,rewards dl_train = DataLoader(ds_train,batch_size=1,collate_fn=collate_fn)dl_val = DataLoader(ds_val,batch_size=1,collate_fn=collate_fn)for batch in dl_train: break
import sys,datetimefrom tqdm import tqdmimport numpy as npfrom accelerate import Acceleratorfrom torchkeras import KerasModelimport pandas as pd from copy import deepcopyclass StepRunner: def __init__(self, net, loss_fn, accelerator=None, stage = "train", metrics_dict = None, optimizer = None, lr_scheduler = None ): self.net,self.loss_fn,self.metrics_dict,self.stage = net,loss_fn,metrics_dict,stage self.optimizer,self.lr_scheduler = optimizer,lr_scheduler self.accelerator = accelerator if accelerator is not None else Accelerator() def __call__(self, batch): samples,reward = batch #torch_data = ([torch.from_numpy(x) for x in batch_data]) loss = self.net.compute_loss(*samples) #backward() if self.optimizer is not None and self.stage=="train": self.accelerator.backward(loss) if self.accelerator.sync_gradients: self.accelerator.clip_grad_norm_(self.net.parameters(), 1.0) self.optimizer.step() if self.lr_scheduler is not None: self.lr_scheduler.step() self.optimizer.zero_grad() #losses (or plain metric) step_losses = {self.stage+"_reward":reward.item(), self.stage+"_loss":loss.item()} #metrics (stateful metric) step_metrics = {} if self.stage=="train": if self.optimizer is not None: step_metrics["lr"] = self.optimizer.state_dict()["param_groups"][0]["lr"] else: step_metrics["lr"] = 0.0 return step_losses,step_metrics class EpochRunner: def __init__(self,steprunner,quiet=False): self.steprunner = steprunner self.stage = steprunner.stage self.accelerator = steprunner.accelerator self.net = steprunner.net self.quiet = quiet def __call__(self,dataloader): dataloader.agent = self.net n = dataloader.size if hasattr(dataloader,"size") else len(dataloader) loop = tqdm(enumerate(dataloader,start=1), total=n, file=sys.stdout, disable=not self.accelerator.is_local_main_process or self.quiet, ncols=100 ) epoch_losses = {} for step, batch in loop: if stepkeras_model = KerasModel(net= agent,loss_fn=None, optimizer=torch.optim.Adam(agent.model.parameters(),lr=1e-2))dfhistory = keras_model.fit(train_data = dl_train, val_data=dl_val, epochs=600, ckpt_path="checkpoint.pt", patience=100, monitor="val_reward", mode="max", callbacks=None, plot= True, cpu=True)
四,评估Agent # 评估 agent, 跑 3 次,总reward求平均def evaluate(env, agent, render=False): eval_reward = [] for i in range(2): obs,info = env.reset() episode_reward = 0 step=0 while step<300: action = agent.predict(obs) # 预测动作,只选最优动作 obs, reward, done, _, _ = env.step(action) episode_reward += reward if render: show_state(env,step,info="reward="+str(episode_reward)) if done: break step+=1 eval_reward.append(episode_reward) return np.mean(eval_reward)
#直观显示动画env = gym.make("CartPole-v1",render_mode="rgb_array") evaluate(env, agent, render=True)可以看到,训练完成之后,我们的agent已经变得非常的智能了,能够维持倒立摆的平衡超过200s。?
288.5
五,保存Agent torch.save(agent.state_dict(),"dqn_agent.pt")
万水千山总是情,点个在看行不行???
本文notebook源码,以及更多有趣范例,可在公众号算法美食屋后台回复关键词:torchkeras,获取~
